
A 2-Stage Matching Scheduler for a VOQ
Packet Switch Architecture1

 Ying Jiang Mounir Hamdi
 Suntek Technology Co., Ltd. Department of Computer Science
 B4010, No.A38, Xueyuan Road, Haidian District Hong Kong University of Science and Technology
 Beijing, 100083, China Clear Water Bay, Kowloon, Hong Kong

Abstract- Virtual Output Queuing (VOQ) is a practical and
high-performance packet switch architecture. There are many
simple iterative arbitration algorithms proposed for the VOQ
architecture. These algorithms either employ a 3-phase or a 2-
phase hand-shaking scheme between the switch inputs and
outputs. It has been shown that neither scheme can outperform
the other in all traffic patterns. As a result, we propose a 2-stage
matching algorithm that combines the benefit of both schemes,
and also achieves the best desynchronization of arbiter pointers
during their scheduling. We will demonstrate that this new
algorithm outperforms all the other iterative algorithms
considered under various traffic models. We also propose a
possible hardware implementation method of the algorithm.

I. INTRODUCTION

The traditional output queuing (OQ) switch architecture is
appreciated for its optimal performance, and is frequently
used as a yardstick by which the performance of newly
proposed switch architectures is measured. OQ switches can
always achieve 100% throughput since up to N packets can
be transferred to a single output port in a time slot for an N x
N switch. However, the high internal speed up, N, required
makes it impractical to build these switches for a large
number of ports and/or for high line rates. In contrast, input
queuing (IQ) switches are designed to operate with a
switching fabric running at an internal rate equal to the
external link speed. Unfortunately, when using a first-in-first-
out (FIFO) queuing discipline at the input queues, due to the
head-of-the-line (HoL) blocking problem, they only provide a
maximum throughput of 58.6% [1] under uniform traffic and
much lower than that for other traffic patterns.

An architecture called virtual output queuing (VOQ) [2] is
proposed to solve the HoL problem while achieving the
scalability of IQ switches. Rather than maintaining a single
FIFO queue for all cells, each input maintains a separate
queue for the cells directed to different outputs. In this
architecture, the switch performance essentially depends on
its scheduling algorithm, that is, the arbitration between the
input ports and the output ports. A good scheduling algorithm
should achieve high performance, work with very high line
rates and/or large number of input/output ports, and be simple
to implement.

1 This research was conducted as part of the MPhil thesis of
Miss Jiang at HKUST, and has been supported in part by a
grant from the Hong Kong Research Grants Council under
the Grant HKUST6202/99E.

Many scheduling algorithms for VOQ switch architectures
have appeared in literature. They can be classified into two
types: approximating maximum size matching (MSM) and
approximating maximum weight matching (MWM).
Although the MWM algorithms have been proven to achieve
100% throughput under any admissible traffic patterns [4][5],
they are too complex to be implemented in hardware and
have a time complexity of (O(N3logN)). We instead
concentrate in this paper on a group of more practical
iterative algorithms, including iSlip [6], DRRM [7], FIRM
[8], etc., and evaluate their performance. The iterative
algorithms can use a 2-phase or a 3-phase hand-shaking
scheme. After exploring the difference between the two
modes, we propose a 2-stage matching algorithm that
combines the benefit of both, and also achieves the best
desynchronization of arbiter pointers during their scheduling.
This new algorithm outperforms all the other iterative
algorithms considered under various traffic models. We also
study its stability property and propose a possible hardware
implementation of the algorithm.

The rest of the paper is organized as follows. Section II
introduces various algorithms in the literature and explains
the difference between 2-phase and 3-phase algorithms.
Based on a static-pointer scheme, we propose the 2-stage
arbitration algorithm in Section III. Section IV details the
simulation results. A possible hardware design is given in
Section V and the last Section concludes the paper.

II. BACKGROUND KNOWLEDGE

A. Maximum Size Matching

The scheduling problem in an N x N crossbar switch can be
modeled using a bipartite graph (See Fig. 1), where each part
of the graph contains N nodes, and one part corresponds to
the input ports, while the second part corresponds to the
output ports. The requests from the input ports to the
corresponding output ports are represented as edges, creating
a bipartite graph. The maximum size matching (MSM) for a
bipartite graph can be found by solving an equivalent
network flow problem [10] and the algorithm is called

2105
0-7803-7400-2/02/$17.00 © 2002 IEEE

maxsize here.

The most efficient algorithm converges in O(N5/2) time [10].
Although it is guaranteed to find a maximum match, it is too
complex to implement in hardware and takes a long time to
converge. Instead, simple iterative algorithms are often used
to approximate MSM.
B. Simple Iterative Algorithms: iSlip & FIRM

There exists a group of algorithms that are easy to
implement in hardware. They only take into consideration
whether each VOQ is occupied or not, to make the
scheduling decision and try to approximate MSM. The
calculation of the matching is performed in an iterative
fashion, where each additional iteration augments the
matching calculated in the previous iteration. During each
iteration, the inputs send requests to the outputs, then each
output selects one request independently and issues a grant to
it, and finally each input chooses one grant to accept. In each
of the following iterations, only the unmatched inputs and
outputs are considered. We now introduce two well-known
iterative scheduling algorithms: iSlip and FIRM.

iSlip was first described in [6]. The main characteristic of
iSlip is its simplicity: it is readily implemented in hardware
and can operate at high speed. Its performance is also good.
For uniform i.i.d. (independently identically distributed)
Bernoulli arrivals, iSlip is stable for any admissible load. It
means that 100% throughput can be achieved. iSlip works in
this way:

Step 1. Request. Each input sends a request to every output
for which it has a queued cell.

Step 2. Grant. If an output receives any requests, it chooses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pointer
to the highest priority element of the round-robin schedule is
incremented (module N) to one location beyond the granted
input if and only if the grant is accepted in Step 3.

Step 3. Accept. If an input receives a grant, it accepts the
one that appears next in a fixed round-robin schedule starting
from the highest priority element. The pointer to the highest
priority element of the round-robin schedule is incremented
(module N) to one location beyond the accepted one.

TABLE I
POINTER UPDATING SCHEMES

iSlip FIRM

No grant unchanged

In
pu

t

Granted one location beyond the accepted one

No request unchanged

Grant
accepted one location beyond the granted one

O
ut

pu
t

Grant not
accepted unchanged the granted one

Fcfs In Round Robin Matching (FIRM) was proposed in
[8]. This algorithm is almost the same as iSlip. We list in
TALBE I, the difference between iSlip and FIRM in updating
their pointers, which is the main difference between them.
The updating scheme plays an important role in determining
the performance of the algorithm. In [8], it is claimed that
FIRM provides improvement over iSlip in average delay
which reaches approximately 50% at loads above 95%. The
reason is that FIRM has a better pointer desynchronization
effect than iSlip under high load of uniform traffic.

C. 3-Phase and 2-Phase Algorithms

The above-mentioned two algorithms are 3-phase
algorithms: each iteration includes 3 steps: request, grant and
accept.

Dual Round Robin Matching (DRRM) scheme [7] is rather
a 2-phase algorithm: grant and accept. The secret of removing
one step is that each input makes only one grant to the
outputs instead of sending out all the requests. Each input
chooses one among the non-empty VOQs to send a grant and
each output chooses one among the grants received to accept,
using the same (pointer-based) scheme in iSlip. The
advantage of DRRM is that it requires less control-
information transmission time.

Logical Equivalence of Parallel Iterative Matching (LE-
PIM) proposed in [3] is similar to DRRM in that it's also a 2-
phase algorithm. The difference between LE-PIM and DRRM
is mainly in resolving contentions: the former uses random
selection, while the latter uses round-robin selection.

Besides simplicity in implementation, let's also consider
how a 2-phase arbitration scheme differs from a 3-phase
arbitration scheme in terms of performance. We first show
some simulation results. The simulation results are gathered
from a 32x32 switch. Delay is only considers the period of
time a cell spends waiting in a VOQ before being transmitted.
Each point in the figures runs for 500,000 time slots, and the
statistics are gathered from the 50,000th time slot. The
average delay is got from all the cells leaving the output links
during this period of time. Relative average delay is the
average delay divided by the average delay of an OQ switch
under the same traffic. By normalized load, we mean the
percentage of time slots that have cells coming in, averaged
over all the inputs.

Inputs Outputs

Fig. 1. Bipartite graph.

2106

We evaluated 4 algorithms: iSlip, DRRM (which can be
considered as a 2-phase iSlip), FIRM, and 2-FIRM (2-phase
FIRM). TABLE II lists the pointer updating schemes of
DRRM and 2-FIRM.

Fig. 2 shows the results under uniform traffic. Under this
traffic model, the packets are Bernoulli arrivals, i.i.d., and the
destinations are uniformly distributed over all the outputs.
We can see that the performance of iSlip and DRRM is
almost the same, and so for FIRM and 2-FIRM. The
performance of FIRM and 2-FIRM is better than that of iSlip
and DRRM because of better desynchronization of the
pointers. It's understandable since 2-phase and 3-phase are
symmetric, only exchanging the functions of the input and
output schedulers. Under uniform traffic, the traffic is also
symmetric in average, resulting in similar performance. How
about non-uniform traffic?

TABLE II
POINTER UPDATING SCHEMES

DRRM 2-FIRM

No traffic unchanged

Grant
accepted one location beyond the granted one

In
pu

t

Grant not
accepted unchanged the granted one

No grant unchanged

O
ut

pu
t

Granted one location beyond the accepted one

Hotspot is a special non-uniform traffic model with an
example pattern as follows (for a 4 x 4 switch):

xxxx
xxxx
xxxx
xxxx

2
2
2
2

One of the outputs gets twice as many packets as the others
and is called the "hotspot" (output 0 here). Fig. 3 shows the
simulation results under hotspot traffic. We can see large

difference between 2-phase and 3-phase algorithms. FIRM
algorithms (FIRM and 2-FIRM) show no obvious advantage
over iSlip algorithms (iSlip and DRRM). We will explain
why 2-phase algorithms outperform 3-phase ones in this case.
Under hotspot traffic, the loads on different inputs are the
same, so it's better to give each input the same chance to be
served. One of the outputs (let's assume output 0) is more
heavily loaded than the others, so it's better to give it more
service. If a 3-phase scheme is used, output 0 only sends one
grant, and if this grant is not accepted, it will not be served.
For a 2-phase algorithm, since there is more traffic towards
output 0, each input has a larger chance of granting output 0,
and as long as there is one input granting output 0, output 0
will be served. So we can see that a 2-phase algorithm gives
the hot-spotted port more service if it is on the output side,

thus decreasing the non-uniformity. We can also conclude
that in the general case, especially when the traffic model
changes from time to time, there will be temporary non-
uniformity on the input or output side. When it is on the input
side, it's better to use a 3-phase scheme, else to use a 2-phase
scheme.

III. THE 2-STAGE ALGORITHM

In this Section, we propose a new algorithm: A 2-stage
matching algorithm. We will also introduce a new pointer-
updating scheme which achieves the best pointer
desynchronization. It's based on the Static Round Robin (SRR)
arbitration algorithms [12] that we previously proposed, and
is here applied to the 2-stage scheme.

A. A Fully Desynchronized Pointer-Updating Scheme

From Section II.B, we know that keeping pointers
desynchronized is important. Because of the better
desynchronization of FIRM than iSlip, FIRM performs better
than iSlip under uniform traffic. [12] proposes a way to
achieve the best pointer desynchroniztion effect. It is
achieved by forcing the pointers to be always different. That
is, the pointers at the output/input side are set totally different

0 .1 0.2 0 .3 0 .4 0.5 0.6 0 .7 0.8 0 .9 1
0

10

20

30

40

50

60

70

N o rm a liz ed lo ad

R
el

at
iv

e
av

er
ag

e
de

la
y

3 2x 3 2 s w itc h u nd er u n iform t ra ffic

iS lip
D R R M
F IR M
2 -F IR M

Fig. 2. Relative average delay as a function of
normalized load for a 32x32 switch under uniform

traffic.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
10

0

10
1

10
2

10
3

10
4

Norm alized load

R
el

at
iv

e
av

er
ag

e
de

la
y

32x32 switc h under hots pot traffic

iS lip
DRRM
FIRM
2-FIRM

Fig. 3. Relative average delay as a function of
normalized load for a 32x32 switch under hotspot

traffic.

2107

at the beginning and advance synchronously at each time slot.
A possible configuration could be (for a 4 x 4 switch):

TABLE III
A POINTER CONFIGURATION TO FORCE THE POINTERS TO BE

DESYNCHRONIZED

Input/
Output 0

Input/
Output 1

Input/
Output 2

Input/
Output 3

Pointers at 4ith time
slot 3 2 1 0

Pointers at (4i+1)th

time slot 0 3 2 1

Pointers at (4i+2)th

time slot 1 0 3 2

Pointers at (4i+3)th

time slot 2 1 0 3

The algorithms using this scheme and the common 3-stage
model are called Static Round Robin (SRR) in [12]. There are
3 algorithms: single SRR (SSRR), double SRR (DSRR) and
rotating DSRR (RDSRR). SSRR means only the output
pointers are forced to be desynchronized; DSRR means that
both the input and output pointers are desynchronized. DSRR
has better performance than SSRR and both are much better
than iSlip and FIRM. However, both have the problem of
unfairness among inputs under some traffic patterns, so a
rotating pointer scheme is used for DSRR to solve it, and thus
RDSRR.

In this paper, we only want to use the pointer-updating
scheme and try to desynchronize the pointers at both sides.
So, the pointer updating in our algorithm will be the same as
DSRR. Pay attention when both-side pointers are
desynchronized, the choice of the pattern is important. The
inputs and outputs are required to have a "mutual selection"
relation. For example, if we configure both the output and
input pointers as in TABLE III, at the 4ith time slot, output 0
selects input 3 as its highest priority input and at the same
time input 3 also selects output 0 as its highest priority output.
The same relationship exists for all pairs of input and output
and always exists at any time slot.

B. The 2-Stage Matching Algorithm

Remember we have discussed in section II.C that using 3-
phase or 2-phase (that is, let the output or the input side make
the main decision) helps reducing non-uniformity on the
input or the output side. This is the basic idea of our
algorithm.

The 2-stage algorithm works in the following way:

1. The pointers at both sides are maintained in the way
mentioned in section III.A. That is, they are always kept
desynchronized.

2. In each iteration, there are 3 steps:

Step 1. Each input sends a request to every output for
which it has a queued cell.

Step 2. Each input selects one VOQ to send a grant that
appears next from its highest priority output. Each output
selects one request received in Step 1 to grant that appears
next from its highest priority input. OutputCount = number of
outputs receiving grants from inputs. InputCount = number of
inputs receiving grants from outputs.

Step 3. If OutputCount ≥ InputCount, each output selects
one among the grants received in Step 2 which appears next
from its highest priority input and sends an accept. Else, each
input selects one among the grants received in Step 2 which
appears next from its highest priority output and sends an
accept.

In simple words, this algorithm decides in each time slot
whether to use a 2-phase or a 3-phase scheme based on which
one can make more matches.

IV. SIMULATION RESULTS

We evaluated the performance of our new algorithm by
comparing it with the algorithms mentioned previously.
Besides uniform and hotspot, we also considered bursty and
unbalanced traffic models. For bursty traffic, busy and idle
periods appear alternatively; in a busy period, there is a cell
arriving in each time slot; in an idle period, there is no cell
arriving in any time slot. The average loads for the inputs are
the same, and the destinations are uniformly distributed burst
by burst over all outputs. The traffic matrix of unbalanced
traffic is as follows (for a 4 x 4 switch):

xx
xx

xx
xx

00
00

00
00

The traffic is concentrated on two "diagonals" and each flow
is Bernoulli.

Fig. 4 shows the results under uniform traffic. We can see
that the 2-stage is better than iSlip, FIRM and DSRR. Since
the traffic is uniform, the benefit brought by considering both
2-phase and 3-phase is not too much, but it still outperforms
DSRR.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Norm aliz ed load

R
el

at
iv

e
av

er
ag

e
de

la
y

32x 32 s witc h under uniform traffic

iS lip
F IRM
DS RR
2-s tage

Fig. 4. Relative average delay as a function of
normalized load for a 32x32 switch under uniform

traffic.

2108

Fig.5 shows the results under bursty traffic. The case is
similar to the uniform case. 2-stage shows more advantage,
since there is more temporary non-uniformity among inputs
or outputs under bursty traffic.

Under hotspot traffic (Fig. 6), we show here some 2-phase
algorithms for comparison. DRRM and 2-FIRM have been
mentioned. 2-DSRR is the 2-phase version of DSRR. We
know that when the non-uniformity is on the output side, 2-
phase algorithms perform much better than their 3-phase
counterparts. We show here 2-stage is even obviously better
than all the 2-phase algorithms considered.

Under unbalanced traffic (Fig. 7), DSRR is unstable under
high load (>0.8). 2-stage is much better than iSlip and FIRM,
especially under high load. For example, the relative average
delay of 2-stage is kept under 6 while that of FIRM can be
more than 100.

From the above results, we can see that our new algorithm,
2-stage matching, is generally much better than both 2-phase
and 3-phase algorithms, no matter what kind of traffic model
is used. In fact, the traffic models we have considered cover
most cases, even some extreme cases.

V. HARDWARE IMPLEMENTATION

We have shown that the 2-stage matching has very good
performance. In this Section, we will show it is also easy to
be implemented in hardware.

0.1 0.2 0 .3 0 .4 0.5 0.6 0 .7 0.8 0 .9 1
0

5

10

15

20

25

30

35

40

45

Norm aliz ed load

R
el

at
ive

 a
ve

ra
ge

 d
el

ay

32x 32 s witc h under unifo rm burs ty t ra ffic

iS lip
F IR M
D S RR
2 -s tage

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
10

0

10
1

Norm aliz ed load

R
el

at
iv

e
av

er
ag

e
de

la
y

32x 32 s witc h under hots pot tra ffic

DRRM
2-F IRM
2-DS RR
2-s tage

Fig. 6. Relative average delay as a function of normalized
load for a 32x32 switch under hotspot traffic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

102

103

10
4

Normalized load

R
el

at
iv

e
av

er
ag

e
de

la
y

32x32 switch under unbalanced traffic

iS lip
FIRM
DSRR
2-s tage

Fig. 7. Average delay as a function of normalized
load for a 32x32 switch under unbalanced traffic.

Fig. 8. Hardware implementation of 2-stage matching
arbitration algorithm.

St
at

e
of

 In
pu

t Q
ue

ue
s

(N
2

bi
ts

)

0

1

N-1

0

1

N-1

D
ec

is
io

n
R

eg
is

te
r

Grant
Arbiters

Accept
Arbiters

Output
Counter

Input
Counter

Compa-
rator

 1st group of inputs
 2nd group of inputs
 2 physical lines
 from comparator

Fig. 5. Average delay as a function of normalized load
for a 32x32 switch under bursty traffic.

2109

Fig. 8 shows a possible implementation design of the 2-
stage matching algorithm. It includes N grant arbiters and N
accept arbiters. Each grant arbiter has two groups of inputs.
For arbiter i, the first group of inputs is the requests from
input i; the second is the requests towards output i. There are
two round-robin schedulers inside an arbiter, outputting two
sets of results: grants to outputs and to inputs. Each dark line
in the figure corresponds to 2 physical lines: one is an input
grant; the other is an output grant. The two sets will be
inputted to the output and input counters respectively. The
two counters will calculate the number of outputs and inputs
receiving grants respectively. The comparator outputs the
information of which number is larger, which controls the
operation of the accept arbiters. Each accept arbiter can
choose to make the input or the output accept the decision
under the control of the comparator. If the comparator shows
that OutputCount is larger, each arbiter will take the input
grants (grants from the input side) and accept one, and vice
versa. Each arbiter only maintains one register to hold the
pointer as the input and output with the same number shares a
pointer.

For each grant arbiter, the input and output grants work in
parallel. For each accept arbiter, it will only choose one task
to do: input or output accept. These two stages are of the
same time complexity as the corresponding parts of the iSlip
design. Output/input counter and comparator only add little to
the total time.

VII. CONCLUSION

In this paper, we have introduced various iterative
algorithms proposed in the literature for the VOQ packet
switch architecture. They are divided into two groups: 3-
phase arbitration algorithms and 2-phase arbitration
algorithms. 3-phase algorithms include iSlip, FIRM, etc. 2-
phase algorithms include DRRM, LE-PIM, etc. By symmetry,
each 3-phase algorithm has its 2-phase counterpart and vice
versa. 3-phase algorithms perform better when the main non-
uniformity is on the input side and 2-phase algorithms
perform better when it is on the output side. In this paper, we
have proposed a 2-stage matching algorithm which decides in
each iteration which hand-shaking mode to use according to
which can make more matches. The pointer-updating scheme
is based the fully-desynchronized SRR arbitration algorithms
that we proposed previously. This scheme achieves the best
pointer desynchronization and helps to improve the
performance. We also propose a practical hardware design of
low complexity.

REFERENCES

[1] M.J. Karol, M. G. Hluchyj, and S.P. Morgan, "Input
Versus Output Queuing on a Space-Division Packet
Switch," IEEE Transactions on Communications,
35:1347-56, 1987.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, "High
Speed Switch Scheduling for Local Area Networks, "
ACM Trans. Comput. Syst., pp. 319-52, Nov. 1993.

[3] G. Nong, J. K. Muppala, and M. Hamdi, "Analysis of
Nonblocking ATM Switches with Multiple Input
Queues," IEEE/ACM Trans. Net. Vol. 7, no. 1, Feb. 1999,
pp.60-74.

[4] N. Mckeown, A. Mekkittikul, V. Anantharam, and J.
Walrand, "Achieving 100% Throughput in an Input-
Queued Switch," IEEE Transactions on Communications,
47: 1260-67, Aug. 1999.

[5] A. Mekkittikul, and N. Mckeown, "A Practical
Scheduling Algorithm to Achieve 100% Throughput in
Input-Queued Switches," IEEE INFOCOM 98, San
Francisco, April 1998.

[6] N. McKeown, "Scheduling Cells in an Input-Queued
Switch," PhD thesis, University of California at Berkeley,
May 1995.

[7] H. J. Chao, and J.-S. Park, "Centralized Contention
Resolution Schemes for A Large-Capacity Optical ATM
Switch," Proc. IEEE ATM Workshop, Fairfax, VA, May
1998.

[8] D. N. Serpanos, and P. I. Antoniadis, "FIRM: A Class of
Distributed Scheduling Algorithms for High-speed ATM
Switches with Multiple Input Queues," in Proc.
INFOCOM, 2000.

[9] R. E. Tarjan, "Data Structures and Network Algorithms,"
Society for Industrial and Applied Mathematics,
Pennsylvania, Nov. 1983.

[10] J. E. Hopcroft, R. M. Karp, "An n5/2 Algorithm for
Maximum Matching in Bipartite Graphs," Society for
Industrial and Applied Mathematics Journal of
Computation, vol.2 pp.225-31, 1973.

[11]N. McKeown, M. Izzard, A. Mekkittikul, and M.
Horowitz, "The Tiny Tera: A Small High-Bandwidth
Packet Switch Core," IEEE Micro Magazine, vol.17, No.
1, pp. 26-33, Jan-Feb, 1997.

[12]Y. Jiang, and M Hamdi, "A Fully Desynchronized
Round-Robin Matching Scheduler for a VOQ Packet
Switch Architecture," Proc. IEEE Workshop on High
Performance Switching and Routing, 2001.

2110

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

